Elder-Rule-Staircodes for Augmented Metric Spaces

03/10/2020
by   Chen Cai, et al.
0

An augmented metric space is a metric space (X, d_X) equipped with a function f_X: X →ℝ. This type of data arises commonly in practice, e.g, a point cloud X in ℝ^d where each point x∈ X has a density function value f_X(x) associated to it. An augmented metric space (X, d_X, f_X) naturally gives rise to a 2-parameter filtration 𝒦. However, the resulting 2-parameter persistent homology H_∙(𝒦) could still be of wild representation type, and may not have simple indecomposables. In this paper, motivated by the elder-rule for the zeroth homology of 1-parameter filtration, we propose a barcode-like summary, called the elder-rule-staircode, as a way to encode H_0(𝒦). Specifically, if n = |X|, the elder-rule-staircode consists of n number of staircase-like blocks in the plane. We show that if H_0(𝒦) is interval decomposable, then the barcode of H_0(𝒦) is equal to the elder-rule-staircode. Furthermore, regardless of the interval decomposability, the fibered barcode, the dimension function (a.k.a. the Hilbert function), and the graded Betti numbers of H_0(𝒦) can all be efficiently computed once the elder-rule-staircode is given. Finally, we develop and implement an efficient algorithm to compute the elder-rule-staircode in O(n^2log n) time, which can be improved to O(n^2α(n)) if X is from a fixed dimensional Euclidean space ℝ^d, where α(n) is the inverse Ackermann function.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro