Eigenvalue distribution of nonlinear models of random matrices

04/05/2019
by   Lucas Benigni, et al.
0

This paper is concerned with the asymptotic empirical eigenvalue distribution of a non linear random matrix ensemble. More precisely we consider M= 1/m YY^* with Y=f(WX) where W and X are random rectangular matrices with i.i.d. centered entries. The function f is applied pointwise and can be seen as an activation function in (random) neural networks. We compute the asymptotic empirical distribution of this ensemble in the case where W and X have sub-Gaussian tails and f is real analytic. This extends a previous result where the case of Gaussian matrices W and X is considered. We also investigate the same questions in the multi-layer case, regarding neural network applications.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro