Eigenvalue Corrected Noisy Natural Gradient

11/30/2018
by   Juhan Bae, et al.
5

Variational Bayesian neural networks combine the flexibility of deep learning with Bayesian uncertainty estimation. However, inference procedures for flexible variational posteriors are computationally expensive. A recently proposed method, noisy natural gradient, is a surprisingly simple method to fit expressive posteriors by adding weight noise to regular natural gradient updates. Noisy K-FAC is an instance of noisy natural gradient that fits a matrix-variate Gaussian posterior with minor changes to ordinary K-FAC. Nevertheless, a matrix-variate Gaussian posterior does not capture an accurate diagonal variance. In this work, we extend on noisy K-FAC to obtain a more flexible posterior distribution called eigenvalue corrected matrix-variate Gaussian. The proposed method computes the full diagonal re-scaling factor in Kronecker-factored eigenbasis. Empirically, our approach consistently outperforms existing algorithms (e.g., noisy K-FAC) on regression and classification tasks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro