Efficiently Learning and Sampling Interventional Distributions from Observations

02/11/2020
by   Arnab Bhattacharyya, et al.
0

We study the problem of efficiently estimating the effect of an intervention on a single variable using observational samples in a causal Bayesian network. Our goal is to give algorithms that are efficient in both time and sample complexity in a non-parametric setting. Tian and Pearl (AAAI `02) have exactly characterized the class of causal graphs for which causal effects of atomic interventions can be identified from observational data. We make their result quantitative. Suppose P is a causal model on a set V of n observable variables with respect to a given causal graph G with observable distribution P. Let P_x denote the interventional distribution over the observables with respect to an intervention of a designated variable X with x. We show that assuming that G has bounded in-degree, bounded c-components, and that the observational distribution is identifiable and satisfies certain strong positivity condition: 1. [Evaluation] There is an algorithm that outputs with probability 2/3 an evaluator for a distribution P' that satisfies d_tv(P_x, P') ≤ϵ using m=Õ(nϵ^-2) samples from P and O(mn) time. The evaluator can return in O(n) time the probability P'(v) for any assignment v to V. 2. [Generation] There is an algorithm that outputs with probability 2/3 a sampler for a distribution P̂ that satisfies d_tv(P_x, P̂) ≤ϵ using m=Õ(nϵ^-2) samples from P and O(mn) time. The sampler returns an iid sample from P̂ with probability 1-δ in O(nϵ^-1logδ^-1) time. We extend our techniques to estimate marginals P_x|_Y over a given Y ⊂ V of interest. We also show lower bounds for the sample complexity showing that our sample complexity has optimal dependence on the parameters n and ϵ as well as the strong positivity parameter.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro