Efficient estimation of stable Levy process with symmetric jumps

05/23/2018
by   Alexandre Brouste, et al.
0

Efficient estimation of a non-Gaussian stable Levy process with drift and symmetric jumps observed at high frequency is considered. For this statistical experiment, the local asymptotic normality of the likelihood is proved with a non-singular Fisher information matrix through the use of a non-diagonal norming matrix. The asymptotic normality and efficiency of a sequence of roots of the associated likelihood equation are shown as well. Moreover, we show that a simple preliminary method of moments can be used as an initial estimator of a scoring procedure, thereby conveniently enabling us to bypass numerically demanding likelihood optimization. Our simulation results show that the one-step estimator can exhibit quite similar finite-sample performance as the maximum likelihood estimator.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro