Efficient coordinate-descent for orthogonal matrices through Givens rotations

12/02/2013
by   Uri Shalit, et al.
0

Optimizing over the set of orthogonal matrices is a central component in problems like sparse-PCA or tensor decomposition. Unfortunately, such optimization is hard since simple operations on orthogonal matrices easily break orthogonality, and correcting orthogonality usually costs a large amount of computation. Here we propose a framework for optimizing orthogonal matrices, that is the parallel of coordinate-descent in Euclidean spaces. It is based on Givens-rotations, a fast-to-compute operation that affects a small number of entries in the learned matrix, and preserves orthogonality. We show two applications of this approach: an algorithm for tensor decomposition that is used in learning mixture models, and an algorithm for sparse-PCA. We study the parameter regime where a Givens rotation approach converges faster and achieves a superior model on a genome-wide brain-wide mRNA expression dataset.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro