ebnm: An R Package for Solving the Empirical Bayes Normal Means Problem Using a Variety of Prior Families

10/01/2021
by   Jason Willwerscheid, et al.
0

The empirical Bayes normal means (EBNM) model plays an important role in both theoretical and applied statistics. Applications include meta-analysis and shrinkage estimation; wavelet denoising; multiple testing and false discovery rate estimation; and empirical Bayes matrix factorization. As such, several software packages have been developed that fit this model under different prior assumptions. Each package naturally has a different interface and outputs, which complicates comparison of results for different prior families. Further, there are some notable gaps in the software - for example, implementations for simple normal and point-normal priors are absent. Motivated by these issues, we developed the R package ebnm, which provides a unified interface for efficiently solving the EBNM problem using a wide variety of prior families, both parametric and non-parametric. Where practical we leverage core fitting procedures from existing packages, writing wrappers to create a unified interface; in other cases, we implement new core fitting procedures ourselves, with a careful focus on both speed and robustness. The result is a convenient and comprehensive package for solving the EBNM problem under a wide range of prior assumptions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro