E-unification for Second-Order Abstract Syntax

02/11/2023
by   Nikolai Kudasov, et al.
0

Higher-order unification (HOU) concerns unification of (extensions of) λ-calculus and can be seen as an instance of equational unification (E-unification) modulo βη-equivalence of λ-terms. We study equational unification of terms in languages with arbitrary variable binding constructions modulo arbitrary second-order equational theories. Abstract syntax with general variable binding and parametrised metavariables allows us to work with arbitrary binders without committing to λ-calculus or use inconvenient and error-prone term encodings, leading to a more flexible framework. In this paper, we introduce E-unification for second-order abstract syntax and describe a unification procedure for such problems, merging ideas from both full HOU and general E-unification. We prove that the procedure is sound and complete.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro