Dynamic Self-training Framework for Graph Convolutional Networks

10/07/2019
by   Ziang Zhou, et al.
0

Graph neural networks (GNN) such as GCN, GAT, MoNet have achieved state-of-the-art results on semi-supervised learning on graphs. However, when the number of labeled nodes is very small, the performances of GNNs downgrade dramatically. Self-training has proved to be effective for resolving this issue, however, the performance of self-trained GCN is still inferior to that of G2G and DGI for many settings. Moreover, additional model complexity make it more difficult to tune the hyper-parameters and do model selection. We argue that the power of self-training is still not fully explored for the node classification task. In this paper, we propose a unified end-to-end self-training framework called Dynamic Self-traning, which generalizes and simplifies prior work. A simple instantiation of the framework based on GCN is provided and empirical results show that our framework outperforms all previous methods including GNNs, embedding based method and self-trained GCNs by a noticeable margin. Moreover, compared with standard self-training, hyper-parameter tuning for our framework is easier.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro