Dynamic Resource Configuration for Low-Power IoT Networks: A Multi-Objective Reinforcement Learning Method

06/05/2021
by   Yang Huang, et al.
0

Considering grant-free transmissions in low-power IoT networks with unknown time-frequency distribution of interference, we address the problem of Dynamic Resource Configuration (DRC), which amounts to a Markov decision process. Unfortunately, off-the-shelf methods based on single-objective reinforcement learning cannot guarantee energy-efficient transmission, especially when all frequency-domain channels in a time interval are interfered. Therefore, we propose a novel DRC scheme where configuration policies are optimized with a Multi-Objective Reinforcement Learning (MORL) framework. Numerical results show that the average decision error rate achieved by the MORL-based DRC can be even less than 12

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro