Dual-Tree Fast Gauss Transforms

02/14/2011
by   Dongryeol Lee, et al.
0

Kernel density estimation (KDE) is a popular statistical technique for estimating the underlying density distribution with minimal assumptions. Although they can be shown to achieve asymptotic estimation optimality for any input distribution, cross-validating for an optimal parameter requires significant computation dominated by kernel summations. In this paper we present an improvement to the dual-tree algorithm, the first practical kernel summation algorithm for general dimension. Our extension is based on the series-expansion for the Gaussian kernel used by fast Gauss transform. First, we derive two additional analytical machinery for extending the original algorithm to utilize a hierarchical data structure, demonstrating the first truly hierarchical fast Gauss transform. Second, we show how to integrate the series-expansion approximation within the dual-tree approach to compute kernel summations with a user-controllable relative error bound. We evaluate our algorithm on real-world datasets in the context of optimal bandwidth selection in kernel density estimation. Our results demonstrate that our new algorithm is the only one that guarantees a hard relative error bound and offers fast performance across a wide range of bandwidths evaluated in cross validation procedures.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro