Domain-based Latent Personal Analysis and its use for impersonation detection in social media

04/05/2020
by   Osnat Mokryn, et al.
0

Zipf's law defines an inverse proportion between a word's ranking in a given corpus and its frequency in it, roughly dividing the vocabulary to frequent (popular) words and infrequent ones. Here, we stipulate that within a domain an author's signature can be derived from, in loose terms, the author's missing popular words and frequently used infrequent-words. We devise a method, termed Latent Personal Analysis (LPA), for finding such domain-based personal signatures. LPA determines what words most contributed to the distance between a user's vocabulary from the domain's. We identify the most suitable distance metric for the method among several and construct a personal signature for authors. We validate the correctness and power of the signatures in identifying authors and utilize LPA to identify two types of impersonation in social media: (1) authors with sockpuppets (multiple) accounts; (2) front-user accounts, operated by several authors. We validate the algorithms and employ them over a large scale dataset obtained from a social media site with over 4000 accounts, and corroborate the results employing temporal rate analysis. LPA can be used to devise personal signatures in a wide range of scientific domains in which the constituents have a long-tail distribution of elements.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro