Do e-scooters fill mobility gaps and promote equity before and during COVID-19? A spatiotemporal analysis using open big data

03/11/2021
by   Xiang Yan, et al.
0

The growing popularity of e-scooters and their rapid expansion across urban streets has attracted widespread attention. A major policy question is whether e-scooters substitute existing mobility options or fill the service gaps left by them. This study addresses this question by analyzing the spatiotemporal patterns of e-scooter service availability and use in Washington DC, focusing on their spatial relationships with public transit and bikesharing. Results from an analysis of three open big datasets suggest that e-scooters have both competing and complementary effects on transit and bikesharing services. The supply of e-scooters significantly overlaps with the service areas of transit and bikesharing, and we classify a majority of e-scooter trips as substitutes to transit and bikesharing uses. A travel-time-based analysis further reveals that when choosing e-scooters over transit, travelers pay a price premium and save some travel time. The price premium is greater during the COVID-19 pandemic but the associated travel-time savings are smaller. This implies that public health considerations rather than time-cost tradeoffs are the main driver for many to choose e-scooters over transit during COVID. In addition, we find that e-scooters complement bikesharing and transit by providing services to underserved neighborhoods. A sizeable proportion (about 10 percent) of e-scooter trips are taken to connect with the rail services. Future research may combine the big-data-based analysis presented here with traditional methods to further shed light on the interactions between e-scooter services, bikesharing, and public transit.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro