Divide-and-conquer methods for big data analysis

02/22/2021
by   Xueying Chen, et al.
0

In the context of big data analysis, the divide-and-conquer methodology refers to a multiple-step process: first splitting a data set into several smaller ones; then analyzing each set separately; finally combining results from each analysis together. This approach is effective in handling large data sets that are unsuitable to be analyzed entirely by a single computer due to limits either from memory storage or computational time. The combined results will provide a statistical inference which is similar to the one from analyzing the entire data set. This article reviews some recently developments of divide-and-conquer methods in a variety of settings, including combining based on parametric, semiparametric and nonparametric models, online sequential updating methods, among others. Theoretical development on the efficiency of the divide-and-conquer methods is also discussed.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro