Distributional Reinforcement Learning for mmWave Communications with Intelligent Reflectors on a UAV

11/03/2020
by   Qianqian Zhang, et al.
0

In this paper, a novel communication framework that uses an unmanned aerial vehicle (UAV)-carried intelligent reflector (IR) is proposed to enhance multi-user downlink transmissions over millimeter wave (mmWave) frequencies. In order to maximize the downlink sum-rate, the optimal precoding matrix (at the base station) and reflection coefficient (at the IR) are jointly derived. Next, to address the uncertainty of mmWave channels and maintain line-of-sight links in a real-time manner, a distributional reinforcement learning approach, based on quantile regression optimization, is proposed to learn the propagation environment of mmWave communications, and, then, optimize the location of the UAV-IR so as to maximize the long-term downlink communication capacity. Simulation results show that the proposed learning-based deployment of the UAV-IR yields a significant advantage, compared to a non-learning UAV-IR, a static IR, and a direct transmission schemes, in terms of the average data rate and the achievable line-of-sight probability of downlink mmWave communications.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro