Distributed Resource Management in Downlink Cache-enabled Multi-cloud Radio Access Networks

04/08/2021
by   Alaa Alameer Ahmad, et al.
0

In the scope of beyond fifth generation (B5G) networks and the massive increase of data-hungry systems, the need of extending conventional single-cloud radio access networks (C-RAN) arises. A compound of several clouds, jointly managing inter-cloud and intra-cloud interference, constitutes a practical solution to cope with requirements of B5G networks. This paper considers a multi-cloud radio access network model (MC-RAN) where each cloud is connected to a distinct set of base stations (BSs) via limited capacity fronthaul links. The BSs are equipped with local cache storage and base-band processing capabilities, as a means to alleviate the fronthaul congestion problem. The paper then investigates the problem of jointly assigning users to clouds and determining their beamforming vectors so as to maximize the network-wide energy efficiency (EE) subject to fronthaul capacity, and transmit power constraints. This paper solves such a mixed discrete-continuous, non-convex optimization problem using fractional programming (FP) and successive inner-convex approximation (SICA) techniques to deal with the non-convexity of the continuous part of the problem, and l_0-norm approximation to account for the binary association part. A highlight of the proposed algorithm is its capability of being implemented in a distributed fashion across the network multiple clouds through a reasonable amount of information exchange. The numerical simulations illustrate the pronounced role the proposed algorithm plays in alleviating the interference of large-scale MC-RANs, especially in dense networks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro