Direction Finding Based on Multi-Step Knowledge-Aided Iterative Conjugate Gradient Algorithms

12/16/2018
by   S. Pinto, et al.
0

In this work, we present direction-of-arrival (DoA) estimation algorithms based on the Krylov subspace that effectively exploit prior knowledge of the signals that impinge on a sensor array. The proposed multi-step knowledge-aided iterative conjugate gradient (CG) (MS-KAI-CG) algorithms perform subtraction of the unwanted terms found in the estimated covariance matrix of the sensor data. Furthermore, we develop a version of MS-KAI-CG equipped with forward-backward averaging, called MS-KAI-CG-FB, which is appropriate for scenarios with correlated signals. Unlike current knowledge-aided methods, which take advantage of known DoAs to enhance the estimation of the covariance matrix of the input data, the MS-KAI-CG algorithms take advantage of the knowledge of the structure of the forward-backward smoothed covariance matrix and its disturbance terms. Simulations with both uncorrelated and correlated signals show that the MS-KAI-CG algorithms outperform existing techniques.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro