Dimension Reduction of Two-Dimensional Persistence via Distance Deformations

03/01/2022
by   Maximilian Neumann, et al.
0

This article grew out of the application part of my Master's thesis at the Faculty of Mathematics and Information Science at Ruprecht-Karls-Universität Heidelberg under the supervision of PD Dr. Andreas Ott. In the context of time series analyses of RNA virus datasets with persistent homology, this article introduces a new method for reducing two-dimensional persistence to one-dimensional persistence by transforming time information into distances.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro