Differentiable Arbitrating in Zero-sum Markov Games

02/20/2023
by   Jing Wang, et al.
0

We initiate the study of how to perturb the reward in a zero-sum Markov game with two players to induce a desirable Nash equilibrium, namely arbitrating. Such a problem admits a bi-level optimization formulation. The lower level requires solving the Nash equilibrium under a given reward function, which makes the overall problem challenging to optimize in an end-to-end way. We propose a backpropagation scheme that differentiates through the Nash equilibrium, which provides the gradient feedback for the upper level. In particular, our method only requires a black-box solver for the (regularized) Nash equilibrium (NE). We develop the convergence analysis for the proposed framework with proper black-box NE solvers and demonstrate the empirical successes in two multi-agent reinforcement learning (MARL) environments.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro