DID: Distributed Incremental Block Coordinate Descent for Nonnegative Matrix Factorization

02/25/2018
by   Tianxiang Gao, et al.
0

Nonnegative matrix factorization (NMF) has attracted much attention in the last decade as a dimension reduction method in many applications. Due to the explosion in the size of data, naturally the samples are collected and stored distributively in local computational nodes. Thus, there is a growing need to develop algorithms in a distributed memory architecture. We propose a novel distributed algorithm, called distributed incremental block coordinate descent (DID), to solve the problem. By adapting the block coordinate descent framework, closed-form update rules are obtained in DID. Moreover, DID performs updates incrementally based on the most recently updated residual matrix. As a result, only one communication step per iteration is required. The correctness, efficiency, and scalability of the proposed algorithm are verified in a series of numerical experiments.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro