Developing neural machine translation models for Hungarian-English

11/07/2021
by   Attila Nagy, et al.
4

I train models for the task of neural machine translation for English-Hungarian and Hungarian-English, using the Hunglish2 corpus. The main contribution of this work is evaluating different data augmentation methods during the training of NMT models. I propose 5 different augmentation methods that are structure-aware, meaning that instead of randomly selecting words for blanking or replacement, the dependency tree of sentences is used as a basis for augmentation. I start my thesis with a detailed literature review on neural networks, sequential modeling, neural machine translation, dependency parsing and data augmentation. After a detailed exploratory data analysis and preprocessing of the Hunglish2 corpus, I perform experiments with the proposed data augmentation techniques. The best model for Hungarian-English achieves a BLEU score of 33.9, while the best model for English-Hungarian achieves a BLEU score of 28.6.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro