Developing a multi-variate prediction model for the detection of COVID-19 from Crowd-sourced Respiratory Voice Data

09/08/2022
by   Wafaa Aljbawi, et al.
0

COVID-19 has affected more than 223 countries worldwide. There is a pressing need for non invasive, low costs and highly scalable solutions to detect COVID-19, especially in low-resource countries where PCR testing is not ubiquitously available. Our aim is to develop a deep learning model identifying COVID-19 using voice data recordings spontaneously provided by the general population (voice recordings and a short questionnaire) via their personal devices. The novelty of this work is in the development of a deep learning model for the identification of COVID-19 patients from voice recordings. Methods: We used the Cambridge University dataset consisting of 893 audio samples, crowd-sourced from 4352 participants that used a COVID-19 Sounds app. Voice features were extracted using a Mel-spectrogram analysis. Based on the voice data, we developed deep learning classification models to detect positive COVID-19 cases. These models included Long-Short Term Memory (LSTM) and Convolutional Neural Network (CNN). We compared their predictive power to baseline classification models, namely Logistic Regression and Support Vector Machine. Results: LSTM based on a Mel-frequency cepstral coefficients (MFCC) features achieved the highest accuracy (89 specificity of respectively 89 model suggest a significant improvement in the prediction accuracy of COVID-19 diagnosis compared to the results obtained in the state of the art. Conclusion: Deep learning can detect subtle changes in the voice of COVID-19 patients with promising results. As an addition to the current testing techniques this model may aid health professionals in fast diagnosis and tracing of COVID-19 cases using simple voice analysis

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro