Dependence Maximizing Temporal Alignment via Squared-Loss Mutual Information

06/19/2012
by   Makoto Yamada, et al.
0

The goal of temporal alignment is to establish time correspondence between two sequences, which has many applications in a variety of areas such as speech processing, bioinformatics, computer vision, and computer graphics. In this paper, we propose a novel temporal alignment method called least-squares dynamic time warping (LSDTW). LSDTW finds an alignment that maximizes statistical dependency between sequences, measured by a squared-loss variant of mutual information. The benefit of this novel information-theoretic formulation is that LSDTW can align sequences with different lengths, different dimensionality, high non-linearity, and non-Gaussianity in a computationally efficient manner. In addition, model parameters such as an initial alignment matrix can be systematically optimized by cross-validation. We demonstrate the usefulness of LSDTW through experiments on synthetic and real-world Kinect action recognition datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro