Dense U-net for super-resolution with shuffle pooling layer

11/11/2020
by   Zhengyang Lu, et al.
0

Single image super-resolution (SISR) in unconstrained environments is challenging because of various illuminations, occlusion and complex environments. Recent researches have achieved great progress on super-resolution due to the development of deep learning in the field of computer vision. In this letter, a Dense U-net with shuffle pooling method is proposed. First, a modified U-net with dense blocks, called dense U-net, is proposed for SISR. Second, a novel pooling strategy called shuffle pooling is designed, which is applied to the dense U-Net for super-resolution task. Third, a mix loss function, which combined with Mean Square Error(MSE), Structural Similarity Index (SSIM) and Mean Gradient Error (MGE), is proposed to solve the perception loss and high-frequency information loss. The proposed method achieves superior accuracy over previous state-of-the-arts on the three benchmark datasets: SET14, BSD300, ICDAR2003. Code is available online.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro