Deep Reinforcement Learning Based Mode Selection and Resource Allocation for Cellular V2X Communications

02/13/2020
by   Xinran Zhang, et al.
0

Cellular vehicle-to-everything (V2X) communication is crucial to support future diverse vehicular applications. However, for safety-critical applications, unstable vehicle-to-vehicle (V2V) links and high signalling overhead of centralized resource allocation approaches become bottlenecks. In this paper, we investigate a joint optimization problem of transmission mode selection and resource allocation for cellular V2X communications. In particular, the problem is formulated as a Markov decision process, and a deep reinforcement learning (DRL) based decentralized algorithm is proposed to maximize the sum capacity of vehicle-to-infrastructure users while meeting the latency and reliability requirements of V2V pairs. Moreover, considering training limitation of local DRL models, a two-timescale federated DRL algorithm is developed to help obtain robust model. Wherein, the graph theory based vehicle clustering algorithm is executed on a large timescale and in turn the federated learning algorithm is conducted on a small timescale. Simulation results show that the proposed DRL-based algorithm outperforms other decentralized baselines, and validate the superiority of the two-timescale federated DRL algorithm for newly activated V2V pairs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro