Deep Multimodality Learning for UAV Video Aesthetic Quality Assessment

11/04/2020
by   Qi Kuang, et al.
0

Despite the growing number of unmanned aerial vehicles (UAVs) and aerial videos, there is a paucity of studies focusing on the aesthetics of aerial videos that can provide valuable information for improving the aesthetic quality of aerial photography. In this article, we present a method of deep multimodality learning for UAV video aesthetic quality assessment. More specifically, a multistream framework is designed to exploit aesthetic attributes from multiple modalities, including spatial appearance, drone camera motion, and scene structure. A novel specially designed motion stream network is proposed for this new multistream framework. We construct a dataset with 6,000 UAV video shots captured by drone cameras. Our model can judge whether a UAV video was shot by professional photographers or amateurs together with the scene type classification. The experimental results reveal that our method outperforms the video classification methods and traditional SVM-based methods for video aesthetics. In addition, we present three application examples of UAV video grading, professional segment detection and aesthetic-based UAV path planning using the proposed method.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro