Deep Learning Features for Robust Detection of Acoustic Events in Sleep-Disordered Breathing

04/05/2019
by   Hector E. Romero, et al.
0

Sleep-disordered breathing (SDB) is a serious and prevalent condition, and acoustic analysis via consumer devices (e.g. smartphones) offers a low-cost solution to screening for it. We present a novel approach for the acoustic identification of SDB sounds, such as snoring, using bottleneck features learned from a corpus of whole-night sound recordings. Two types of bottleneck features are described, obtained by applying a deep autoencoder to the output of an auditory model or a short-term autocorrelation analysis. We investigate two architectures for snore sound detection: a tandem system and a hybrid system. In both cases, a `language model' (LM) was incorporated to exploit information about the sequence of different SDB events. Our results show that the proposed bottleneck features give better performance than conventional mel-frequency cepstral coefficients, and that the tandem system outperforms the hybrid system given the limited amount of labelled training data available. The LM made a small improvement to the performance of both classifiers.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro