Deep Learning-based End-to-end Diagnosis System for Avascular Necrosis of Femoral Head

02/12/2020
by   Yang Li, et al.
7

As the first diagnostic imaging modality of avascular necrosis of the femoral head (AVNFH), accurately staging AVNFH from a plain radiograph is critical and challenging for orthopedists. Thus, we propose a deep learning-based AVNFH diagnosis system (AVN-net). The proposed AVN-net reads plain radiographs of the pelvis, conducts diagnosis, and visualizes results automatically. Deep convolutional neural networks are trained to provide an end-to-end diagnosis solution, covering femoral head detection, exam-view/sides identification, AVNFH diagnosis, and key clinical note generation subtasks. AVN-net is able to obtain state-of-the-art testing AUC of 0.95 (95 detection and significantly greater F1 scores (p<0.01) than less-to-moderately experienced orthopedists in all diagnostic tests. Furthermore, two real-world pilot studies were conducted for diagnosis support and education assistance, respectively, to assess the utility of AVN-net. The experimental results are promising. With the AVN-net diagnosis as a reference, the diagnostic accuracy and consistency of all orthopedists considerably improved while requiring only 1/4 of the time. Students self-studying the AVNFH diagnosis using AVN-net can learn better and faster than the control group. To the best of our knowledge, this study is the first research on the prospective use of a deep learning-based diagnosis system for AVNFH by conducting two pilot studies representing real-world application scenarios. We have demonstrated that the proposed AVN-net achieves expert-level AVNFH diagnosis performance, provides efficient support in clinical decision-making, and effectively passes clinical experience to students.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro