Deep Learning-Aided Delay-Tolerant Zero-Forcing Precoding in Cell-Free Massive MIMO

10/11/2022
by   Wei Jiang, et al.
0

In the context of cell-free massive multi-input multi-output (CFmMIMO), zero-forcing precoding (ZFP) is superior in terms of spectral efficiency. However, it suffers from channel aging owing to fronthaul and processing delays. In this paper, we propose a robust scheme coined delay-tolerant zero-forcing precoding (DT-ZFP), which exploits deep learning-aided channel prediction to alleviate the effect of outdated channel state information (CSI). A predictor consisting of a bank of user-specific predictive modules is specifically designed for such a multi-user scenario. Leveraging the degree of freedom brought by the prediction horizon, the delivery of CSI and precoded data through a fronthaul network and the transmission of user data and pilots over an air interface can be parallelized. Therefore, DT-ZFP not only effectively combats channel aging but also avoids the inefficient Stop-and-Wait mechanism of the canonical ZFP in CFmMIMO.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro