Deep Cross-Subject Mapping of Neural Activity

07/13/2020
by   Marko Angjelichinoski, et al.
0

In this paper, we demonstrate that a neural decoder trained on neural activity signals of one subject can be used to robustly decode the motor intentions of a different subject with high reliability. This is achieved in spite of the non-stationary nature of neural activity signals and the subject-specific variations of the recording conditions. Our proposed algorithm for cross-subject mapping of neural activity is based on deep conditional generative models. We verify the results on an experimental data set in which two macaque monkeys perform memory-guided visual saccades to one of eight target locations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro