Deep Cross Polarimetric Thermal-to-visible Face Recognition

01/04/2018
by   Seyed Mehdi Iranmanesh, et al.
0

In this paper, we present a deep coupled learning frame- work to address the problem of matching polarimetric ther- mal face photos against a gallery of visible faces. Polariza- tion state information of thermal faces provides the miss- ing textural and geometrics details in the thermal face im- agery which exist in visible spectrum. we propose a coupled deep neural network architecture which leverages relatively large visible and thermal datasets to overcome the problem of overfitting and eventually we train it by a polarimetric thermal face dataset which is the first of its kind. The pro- posed architecture is able to make full use of the polari- metric thermal information to train a deep model compared to the conventional shallow thermal-to-visible face recogni- tion methods. Proposed coupled deep neural network also finds global discriminative features in a nonlinear embed- ding space to relate the polarimetric thermal faces to their corresponding visible faces. The results show the superior- ity of our method compared to the state-of-the-art models in cross thermal-to-visible face recognition algorithms.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro