Deep Convolutional Learning-Aided Detector for Generalized Frequency Division Multiplexing with Index Modulation

02/06/2022
by   Merve Turhan, et al.
0

In this paper, a deep convolutional neural network-based symbol detection and demodulation is proposed for generalized frequency division multiplexing with index modulation (GFDM-IM) scheme in order to improve the error performance of the system. The proposed method first pre-processes the received signal by using a zero-forcing (ZF) detector and then uses a neural network consisting of a convolutional neural network (CNN) followed by a fully-connected neural network (FCNN). The FCNN part uses only two fully-connected layers, which can be adapted to yield a trade-off between complexity and bit error rate (BER) performance. This two-stage approach prevents the getting stuck of neural network in a saddle point and enables IM blocks processing independently. It has been demonstrated that the proposed deep convolutional neural network-based detection and demodulation scheme provides better BER performance compared to ZF detector with a reasonable complexity increase. We conclude that non-orthogonal waveforms combined with IM schemes with the help of deep learning is a promising physical layer (PHY) scheme for future wireless networks

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro