Decompositions of q-Matroids Using Cyclic Flats

02/04/2023
by   Heide Gluesing-Luerssen, et al.
0

We study the direct sum of q-matroids by way of their cyclic flats. Using that the rank function of a q-matroid is fully determined by the cyclic flats and their ranks, we show that the cyclic flats of the direct sum of two q-matroids are exactly all the direct sums of the cyclic flats of the two summands. This simplifies the rank function of the direct sum significantly. A q-matroid is called irreducible if it cannot be written as a (non-trivial) direct sum. We provide a characterization of irreducibility in terms of the cyclic flats and show that every q-matroid can be decomposed into a direct sum of irreducible q-matroids, which are unique up to equivalence.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro