DataTales: Investigating the use of Large Language Models for Authoring Data-Driven Articles

08/08/2023
by   Nicole Sultanum, et al.
0

Authoring data-driven articles is a complex process requiring authors to not only analyze data for insights but also craft a cohesive narrative that effectively communicates the insights. Text generation capabilities of contemporary large language models (LLMs) present an opportunity to assist the authoring of data-driven articles and expedite the writing process. In this work, we investigate the feasibility and perceived value of leveraging LLMs to support authors of data-driven articles. We designed a prototype system, DataTales, that leverages a LLM to generate textual narratives accompanying a given chart. Using DataTales as a design probe, we conducted a qualitative study with 11 professionals to evaluate the concept, from which we distilled affordances and opportunities to further integrate LLMs as valuable data-driven article authoring assistants.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro