Data Structures for Deviation Payoffs

02/26/2023
by   Bryce Wiedenbeck, et al.
0

We present new data structures for representing symmetric normal-form games. These data structures are optimized for efficiently computing the expected utility of each unilateral pure-strategy deviation from a symmetric mixed-strategy profile. The cumulative effect of numerous incremental innovations is a dramatic speedup in the computation of symmetric mixed-strategy Nash equilibria, making it practical to represent and solve games with dozens to hundreds of players. These data structures naturally extend to role-symmetric and action-graph games with similar benefits.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro