Data Reduction for Maximum Matching on Real-World Graphs: Theory and Experiments

06/25/2018
by   Viatcheslav Korenwein, et al.
0

Finding a maximum-cardinality or maximum-weight matching in (edge-weighted) undirected graphs is among the most prominent problems of algorithmic graph theory. For n-vertex and m-edge graphs, the best known algorithms run in O(m√(n)) time. We build on recent theoretical work focusing on linear-time data reduction rules for finding maximum-cardinality matchings and complement the theoretical results by presenting and analyzing (thereby employing the kernelization methodology of parameterized complexity analysis) linear-time data reduction rules for the positive-integer-weighted case. Moreover, we experimentally demonstrate that these data reduction rules provide significant speedups of the state-of-the art implementation for computing matchings in real-world graphs: the average speedup is 3800 case and "just" 30

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro