Data-driven Natural Language Generation: Paving the Road to Success

06/28/2017
by   Jekaterina Novikova, et al.
0

We argue that there are currently two major bottlenecks to the commercial use of statistical machine learning approaches for natural language generation (NLG): (a) The lack of reliable automatic evaluation metrics for NLG, and (b) The scarcity of high quality in-domain corpora. We address the first problem by thoroughly analysing current evaluation metrics and motivating the need for a new, more reliable metric. The second problem is addressed by presenting a novel framework for developing and evaluating a high quality corpus for NLG training.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro