DAQN: Deep Auto-encoder and Q-Network

06/02/2018
by   Daiki Kimura, et al.
0

The deep reinforcement learning method usually requires a large number of training images and executing actions to obtain sufficient results. When it is extended a real-task in the real environment with an actual robot, the method will be required more training images due to complexities or noises of the input images, and executing a lot of actions on the real robot also becomes a serious problem. Therefore, we propose an extended deep reinforcement learning method that is applied a generative model to initialize the network for reducing the number of training trials. In this paper, we used a deep q-network method as the deep reinforcement learning method and a deep auto-encoder as the generative model. We conducted experiments on three different tasks: a cart-pole game, an atari game, and a real-game with an actual robot. The proposed method trained efficiently on all tasks than the previous method, especially 2.5 times faster on a task with real environment images.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro