D2C-SR: A Divergence to Convergence Approach for Image Super-Resolution

03/26/2021
by   Youwei Li, et al.
0

In this paper, we present D2C-SR, a novel framework for the task of image super-resolution(SR). As an ill-posed problem, the key challenge for super-resolution related tasks is there can be multiple predictions for a given low-resolution input. Most classical methods and early deep learning based approaches ignored this fundamental fact and modeled this problem as a deterministic processing which often lead to unsatisfactory results. Inspired by recent works like SRFlow, we tackle this problem in a semi-probabilistic manner and propose a two-stage pipeline: a divergence stage is used to learn the distribution of underlying high-resolution outputs in a discrete form, and a convergence stage is followed to fuse the learned predictions into a final output. More specifically, we propose a tree-based structure deep network, where each branch is designed to learn a possible high-resolution prediction. At the divergence stage, each branch is trained separately to fit ground truth, and a triple loss is used to enforce the outputs from different branches divergent. Subsequently, we add a fuse module to combine the multiple predictions as the outputs from the first stage can be sub-optimal. The fuse module can be trained to converge w.r.t the final high-resolution image in an end-to-end manner. We conduct evaluations on several benchmarks, including a new proposed dataset with 8x upscaling factor. Our experiments demonstrate that D2C-SR can achieve state-of-the-art performance on PSNR and SSIM, with a significantly less computational cost.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro