d-Separation: From Theorems to Algorithms

03/27/2013
by   Dan Geiger, et al.
0

An efficient algorithm is developed that identifies all independencies implied by the topology of a Bayesian network. Its correctness and maximality stems from the soundness and completeness of d-separation with respect to probability theory. The algorithm runs in time O (l E l) where E is the number of edges in the network.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro