Cross-Lingual Text Classification with Minimal Resources by Transferring a Sparse Teacher

10/06/2020
by   Giannis Karamanolakis, et al.
0

Cross-lingual text classification alleviates the need for manually labeled documents in a target language by leveraging labeled documents from other languages. Existing approaches for transferring supervision across languages require expensive cross-lingual resources, such as parallel corpora, while less expensive cross-lingual representation learning approaches train classifiers without target labeled documents. In this work, we propose a cross-lingual teacher-student method, CLTS, that generates "weak" supervision in the target language using minimal cross-lingual resources, in the form of a small number of word translations. Given a limited translation budget, CLTS extracts and transfers only the most important task-specific seed words across languages and initializes a teacher classifier based on the translated seed words. Then, CLTS iteratively trains a more powerful student that also exploits the context of the seed words in unlabeled target documents and outperforms the teacher. CLTS is simple and surprisingly effective in 18 diverse languages: by transferring just 20 seed words, even a bag-of-words logistic regression student outperforms state-of-the-art cross-lingual methods (e.g., based on multilingual BERT). Moreover, CLTS can accommodate any type of student classifier: leveraging a monolingual BERT student leads to further improvements and outperforms even more expensive approaches by up to 12 emerging tasks in low-resource languages using just a small number of word translations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro