Cross-Channel Intragroup Sparsity Neural Network

10/26/2019
by   Zhilin Yu, et al.
24

Modern deep neural network models generally build upon heavy over-parameterization for their exceptional performance. Network pruning is one often employed approach to obtain less demanding models for their deployment. Fine-grained pruning, while can achieve good model compression ratio, introduces irregularity in the computing data flow, often does not give improved model inference efficiency. Coarse-grained model pruning, while allows good inference speed through removing network weights in whole groups, for example, a whole filter, can lead to significant model performance deterioration. In this study, we introduce the cross-channel intragroup (CCI) sparsity structure that can avoid the inference inefficiency of fine-grained pruning while maintaining outstanding model performance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro