Criticality and Utility-aware Fog Computing System for Remote Health Monitoring

05/24/2021
by   Navneet Taunk, et al.
0

Growing remote health monitoring system allows constant monitoring of the patient's condition and performance of preventive and control check-ups outside medical facilities. However, the real-time smart-healthcare application poses a delay constraint that has to be solved efficiently. Fog computing is emerging as an efficient solution for such real-time applications. Moreover, different medical centers are getting attracted to the growing IoT-based remote healthcare system in order to make a profit by hiring Fog computing resources. However, there is a need for an efficient algorithmic model for allocation of limited fog computing resources in the criticality-aware smart-healthcare system considering the profit of medical centers. Thus, the objective of this work is to maximize the system utility calculated as a linear combination of the profit of the medical center and the loss of patients. To measure profit, we propose a flat-pricing-based model. Further, we propose a swapping-based heuristic to maximize the system utility. The proposed heuristic is tested on various parameters and shown to perform close to the optimal with criticality-awareness in its core. Through extensive simulations, we show that the proposed heuristic achieves an average utility of 96% of the optimal, in polynomial time complexity.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro