COVID-19: Comparative Analysis of Methods for Identifying Articles Related to Therapeutics and Vaccines without Using Labeled Data

01/05/2021
by   Mihir Parmar, et al.
2

Here we proposed an approach to analyze text classification methods based on the presence or absence of task-specific terms (and their synonyms) in the text. We applied this approach to study six different transfer-learning and unsupervised methods for screening articles relevant to COVID-19 vaccines and therapeutics. The analysis revealed that while a BERT model trained on search-engine results generally performed well, it miss-classified relevant abstracts that did not contain task-specific terms. We used this insight to create a more effective unsupervised ensemble.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro