Counting colorings of triangle-free graphs

09/27/2021
by   Anton Bernshteyn, et al.
0

By a theorem of Johansson, every triangle-free graph G of maximum degree Δ has chromatic number at most (C+o(1))Δ/logΔ for some universal constant C > 0. Using the entropy compression method, Molloy proved that one can in fact take C = 1. Here we show that for every q ≥ (1 + o(1))Δ/logΔ, the number c(G,q) of proper q-colorings of G satisfies c(G, q) ≥ (1 - 1/q)^m ((1-o(1))q)^n, where n = |V(G)| and m = |E(G)|. Except for the o(1) term, this lower bound is best possible as witnessed by random Δ-regular graphs. When q = (1 + o(1)) Δ/logΔ, our result yields the inequality c(G,q) ≥ exp((1 - o(1)) logΔ/2 n), which implies the optimal lower bound on the number of independent sets in G due to Davies, Jenssen, Perkins, and Roberts. An important ingredient in our proof is the counting method that was recently developed by Rosenfeld. As a byproduct, we obtain an alternative proof of Molloy's bound χ(G) ≤ (1 + o(1))Δ/logΔ using Rosenfeld's method in place of entropy compression.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro