Corticomorphic Hybrid CNN-SNN Architecture for EEG-based Low-footprint Low-latency Auditory Attention Detection

07/13/2023
by   Richard Gall, et al.
0

In a multi-speaker "cocktail party" scenario, a listener can selectively attend to a speaker of interest. Studies into the human auditory attention network demonstrate cortical entrainment to speech envelopes resulting in highly correlated Electroencephalography (EEG) measurements. Current trends in EEG-based auditory attention detection (AAD) using artificial neural networks (ANN) are not practical for edge-computing platforms due to longer decision windows using several EEG channels, with higher power consumption and larger memory footprint requirements. Nor are ANNs capable of accurately modeling the brain's top-down attention network since the cortical organization is complex and layer. In this paper, we propose a hybrid convolutional neural network-spiking neural network (CNN-SNN) corticomorphic architecture, inspired by the auditory cortex, which uses EEG data along with multi-speaker speech envelopes to successfully decode auditory attention with low latency down to 1 second, using only 8 EEG electrodes strategically placed close to the auditory cortex, at a significantly higher accuracy of 91.03 state-of-the-art. Simultaneously, when compared to a traditional CNN reference model, our model uses  15 in  57 edge-computing in brain-embedded devices, like smart hearing aids.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro