Correction of "Cloud Removal By Fusing Multi-Source and Multi-Temporal Images"

07/25/2017
by   Chengyue Zhang, et al.
0

Remote sensing images often suffer from cloud cover. Cloud removal is required in many applications of remote sensing images. Multitemporal-based methods are popular and effective to cope with thick clouds. This paper contributes to a summarization and experimental comparation of the existing multitemporal-based methods. Furthermore, we propose a spatiotemporal-fusion with poisson-adjustment method to fuse multi-sensor and multi-temporal images for cloud removal. The experimental results show that the proposed method has potential to address the problem of accuracy reduction of cloud removal in multi-temporal images with significant changes.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro