Convergence Rates for Mixture-of-Experts

10/10/2011
by   Eduardo F. Mendes, et al.
0

In mixtures-of-experts (ME) model, where a number of submodels (experts) are combined, there have been two longstanding problems: (i) how many experts should be chosen, given the size of the training data? (ii) given the total number of parameters, is it better to use a few very complex experts, or is it better to combine many simple experts? In this paper, we try to provide some insights to these problems through a theoretic study on a ME structure where m experts are mixed, with each expert being related to a polynomial regression model of order k. We study the convergence rate of the maximum likelihood estimator (MLE), in terms of how fast the Kullback-Leibler divergence of the estimated density converges to the true density, when the sample size n increases. The convergence rate is found to be dependent on both m and k, and certain choices of m and k are found to produce optimal convergence rates. Therefore, these results shed light on the two aforementioned important problems: on how to choose m, and on how m and k should be compromised, for achieving good convergence rates.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro