Convergence error estimates at low regularity for time discretizations of KdV

02/22/2021
by   Frédéric Rousset, et al.
0

We consider various filtered time discretizations of the periodic Korteweg–de Vries equation: a filtered exponential integrator, a filtered Lie splitting scheme as well as a filtered resonance based discretisation and establish convergence error estimates at low regularity. Our analysis is based on discrete Bourgain spaces and allows to prove convergence in L^2 for rough data u_0∈ H^s, s>0 with an explicit convergence rate.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro