Contracting and Involutive Negations of Probability Distributions

03/30/2021
by   Ildar Batyrshin, et al.
0

A dozen papers have considered the concept of negation of probability distributions (pd) introduced by Yager. Usually, such negations are generated point-by-point by functions defined on a set of probability values and called here negators. Recently it was shown that Yager negator plays a crucial role in the definition of pd-independent linear negators: any linear negator is a function of Yager negator. Here, we prove that the sequence of multiple negations of pd generated by a linear negator converges to the uniform distribution with maximal entropy. We show that any pd-independent negator is non-involutive, and any non-trivial linear negator is strictly contracting. Finally, we introduce an involutive negator in the class of pd-dependent negators that generates an involutive negation of probability distributions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro